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ABSTRACT

Reynolds stress calculations of homogeneous turbulent shear flow are conducted with a

second-order closure model modified to account for non-equilibrium vortex stretching in the

dissipation rate transport equation as recently proposed by Bernard and Speziale [J. Fluids

Engng. 114, 29 (1992)]. As with the earlier reported K- e model calculations incorporating

this vortex stretching effect, a production-equals-dissipation equilibrium is obtained with

bounded turbulent kinetic energy and dissipation. However, this equilibrium is now not

achieved until the dimensionless time 5't > 60 an elapsed time that is at least twice as large

as any of those considered in previous numerical and physical experiments on honaogeneous

shear flow. Direct quantitative comparisons between the model predictions and the results

of experiments are quite favorable. In particular, it is shown that the inclusion of this non-

equilibrium vortex stretching effect has the capability of explaining the significant range of

production to dissipation ratios observed in experiments.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASl-18605 and NAS1-19480 while the first author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, lIampton, VA 23665.





INTRODUCTION

Ii1 transport modelsfor the turbulent dissipationrate it is traditionally assumedthat an

equilibrium existswherethe production of dissipationby vortex stretchingis exactly counter-

balancedby the leadingorder part of the destruction of dissipationterm (seeTennekesand

Lumley 1972and Lesieur 1990). Recently, Bernard and Speziale(1992) proposeda new
transport model for the dissipationrate with residualvortex stretching to accountfor small

departuresfrom equilibrium. This new model - which is of the samegeneralform as that

obtained from the theory of self-preservation(seeSpezlaleand Bernard 1992and George

1992)- wasshownto yield a morecompletedescriptionof isotropicdecay.More importantly,
however, it was demonstratedby Bernard and Speziale(1992) that the inclusion of this

vortex stretching effect yields a production-equals-dissipationequilibrium in homogeneous

shear flow, with bounded turbulent kinetic energy and dissipation. Prior to saturation -

which occursat an elapsedtime larger than anyof thoseconsideredin previously conducted

physical and numericalexperiments- the turbulent kinetic energyand dissipationrate grow

exponentially with time. Good qualitative agreementbetweenthe model predictions with

vortex stretching, and the results of physical and numerical experimentson homogeneous

shearflow, wasdemonstratedby Bernard and Speziale(1992)and Bernard, Thangam and

Speziale(1992). However,they werenot ableto makemoredetailedquantitative comparisons
with experimentssince,for simplicity, they basedtheir calculationson the I(-E model. This

establishes the motivation of the present paper: to present full Reynolds stress calculations of

homogeneous shear flow with a state of the art second-order closure model that incorporates

this vortex stretching effect.

In this paper, more detailed calculations of homogeneous shear flow are presented based

on the second-order closure model of Speziale, Sarkar and Gatski (1991) modified to account

for non-equilibrium vortex stretching in the dissipation rate transport equation. For elapsed

times ,S't < 30, vortex stretching has little qualitative effect on the solution which exhibits an

exponential time growth of turbulent kinetic energy and dissipation that is in good agreement

with the results of physical and numerical experiments (see Tavoularis and Karnik 1989 and

Rogers, Moin and Reynolds 1986). However, for St > 60 (which is far beyond the largest

elapsed time that has been considered in experiments), the flow saturates to a production-

equals-dissipation equilibrium. Interesting features of this vortex stretching solution - which

include its apparent ability to explain the wide range of production to dissipation ratios

observed in experiments - are discussed along with the implications for turbulence modeling.



FORMULATION OF THE PROBLEM

We consider laomogeneous turbulent shear flow where the mean velocity gradient tensor

takes the form
0iz_

- ,5'5ii 5j2 (1)
Oxj

given that S is a constant shear rate and 6ij is the Kronecker delta. In the usual formulations

of homogeneous shear flow, an initially decaying isotropic turbulence is subjected to the

-' ' is a solution ofuniform shear rate ,5' at time t = 0. The Reynolds stress tensor r/j = uiu j

the transport equation (c.f. Hinze 1975)

(2)

in incompressible homogeneous turbulence, where a superposed dot represents a time deriva-

tive and

\b-gT.j+ aT.,] ' _ = "ox_ox; (3)

denote, respectively, the pressure-strain correlation and the turbulent dissipation rate. In

(3), p' and u_ represent the fluctuating pressure and fluctuating velocity, respectively, and u

denotes the kinematic viscosity of the fluid; as with most model studies of high-Reynolds-

number turbulence, Kolmogorov's assumption of local isotropy is invoked for the dissipation

rate.

In order to achieve closure, models must be provided for the pressure-strain correlation

Ilij and the turbulent dissipation rate e. The recent pressure-strain model of Speziale, Sarkar

and Gatski (1991) is utilized which takes the form:

Hij = -(C1 e + C;P)bij + C2s (bikbk, - lbk,bk,Sg)

+(Ca -- C3II* 1/2)i_i.-',5'ij + C4l_i" (bikSjk + bjk_- ik (4)

where

K== -- -_-rii

Ogi

II = b_jb_j, 7:' = -r_j Oxj

-&J= -_.\oxj + Ox,] ' W,j = _ _ Ox,

(5)

(6)

(7)



given that bij is the anisotropy tensor, K is the turbulent kinetic energy, and T' is the

turbulence production. The constants of the model are given as follows: C1 = 3.4, Cf = 1.80,

C2 = 4.2, Ca = 4/5, C_ = 1.30, C4 = 1.25 and C5 = 0.40. Equation (2) is solved with the

modeled dissipation rate transport equation

e C _1/2 e 2 e 2
i = C,,-ffP +,_,_,_, -ff C_2-ff (8)

where R, = K2/v¢ is the turbulence Reynolds number and ('Tel , _'_e2 and (7e3 are constants

(see Bernard and Speziale 1992). The term containing C_a occurs when there is a departure

from equilibrium so that there is an imbalance between the production of dissipation by

vortex stretching and the leading order part of the destruction of dissipation term which

i_1/2each scale as -_t . Equation (8) is of the same general mathematical form as that obtained

from the theory of self-preservation (see Spezia!e and Bernard 1992 and George 1992)_ The

standard modeled dissipation rate transport equation is recovered in the limit as C_a goes to

zero. The same values of U_l and C'_2 as proposed in tile Speziale, Sarkar and Gatski (SSG)

model are chosen:

C_ = 1.44, C_2 = 1.83. (9)

A variety of values of C_3 in the range of 0.00I to 0.01 will be considered (these represent

small imbalances in vortex stretching of the order of 0.1% - 1.0%; of course, the inagnitude

of this imbalance can depend on the initial conditions).

The governing nonlinear differential equations for homogeneous shear flow are obtained

by substituting (1)into (2) and (8) while making use of the pressure-straln model (4). Five

coupled nonlinear differential equations for r11, T12, T22, raa, and e comprise this system. These

coupled equations can be easily converted to an equivalent set in terms of b11, b12, b22, baa

and ,gK/e which constitute the non-dimensional structural parameters of the problem that

achieve equilibrium values that are independent of the initial conditions (see Speziale and

Mac Giolla Mhuiris 1989a,b). The governing system of differential equations are solved

subject to the initial conditions:

SK SKo
bij = O, R_ = Rto, - (10)

g gO

at time t = 0. Only the solutions with net vortex stretching (CCa > 0) require the specifica-

tion of the initial turbulence Reynolds immber.

DISCUSSION OF THE RESULTS

We now present results obtained from a Runge-Kutta numerical integration scheme. In

Figure l(a), the time evolution of tlle dimensionless turbulent kinetic energy (K* - K/Ko)
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is shown as a function of the dimensionless time (t* =- St) for SKo/eo = 3.38 and Rt0 = 750

the initial conditions of the large-eddy simulation of Bardina, Ferziger and Reynolds (1983).

Here, we set C_3 = 0.001 so that there is only a minute imbalance in vortex stretching of the

order of 0.1%. As with the earlier reported calculations with the SSG model where C_3 = 0,

there is excellent agreement between the model predictions and the large-eddy simulation

results as illustrated in Figure l(a). However, while there is virtually no difference between

the short-time predictions of the SSG model with C¢3 = 0 and CCa = 0.001, there is a distinct

difference in the long-time solutions. When CCa = 0, the kinetic energy and dissipation rate

grow unbounded with time; for t* >> 1,

K* _ eat* , e* _ e _t" (11)

so that K* and c* _ c_ as t* _ oo. For any finite C_3 - no matter how small it inay be -

the turbulent kinetic energy and dissipation rate eventually saturate to bounded equilibrium

values after an early time exponential growth as shown in Figure l(b).

In Figure 2, the time evolution of the turbulent kinetic energy is shown for the same

initial conditions (SKo/_o = 3.38, Rt0 = 750) but with a variety of different values for

C_3. It is clear from these results that the value of C_a determines the saturation level of

the turbulent kinetic energy. For sufficiently small C'_3, tile turbulent kinetic energy grows

exponentially for St < 30 the largest elapsed time considered in all previously conducted

physical and numerical experimellts. Here, saturation does not occur until ,5't > 60, which

is a value that is more than double that of any considered in previous experiments. If the

vortex stretching solution were examined in isolation for elapsed times St < 30, it could

be erroneously concluded that there is an unbounded exponential time growth of turbulent

kinetic energy. This points to the danger of drawing conclusions about long-time asymptotic

states from data corresponding to only limited elapsed times.

In Figure 3(a), the time evolution of the ratio of production to dissipation P/¢ predicted

by the SSG model both with and without vortex stretching is shown. The non-zero values of

the constant C_a are in the range of 0.001-0.009 (an imbalance in vortex stretching of the order

of 0.1%-1%). It is clear from this figure that just a minute imbalance in vortex stretching

can cause a significant spread in T'/¢ at St = 30. This is reminiscent of the experiments of

Tavoularis and Karnik (1989) where, for comparably large shear rates 5_Ko/¢o > l, values

of P/¢ in the range of 1.4 - 1.8 have been observed at the latest station measured which

corresponds to St _ 30. Furthermore, T_/¢ peaks at St _ 20 before asymptoting to a value of

7)/e = I which is achieved for values of ,5't > 60 as shown in Figure 3(1)). This phenomenon of

a local maximum being reached, followed a gradual dropoff in the time interval 0 _< St <_ 30,

is reminiscent of results observed in physical and numerical experiments (see ttie direct



simulations of Rogers et a]. 1986 shown in Figure 4). Without this vortex stretching effect,

second-order closures predict that 7:'/¢ goes to an equilibrium value of (C_2- 1)/(C¢, - 1)

monotonically, getting close by the time St = 20.

As in the absence of this vortex stretching effect, second-order closure models predict

that bij and SK/e achieve equilibrium values that are independent of tile initial conditions

as well as tile constants C_,, C_2 and C,a. Ill Table 1, the equilibrium values predicted

by the standard SSG model (C¢8 = 0) and the SSG model with vortex stretching (C_3 >

0) are compared with the physical and numerical experiments of Tavoularis and Karnik

(1989) and Rogers et al. (1986). The inclusion of vortex stretching only causes modest

deviations from the experimental values for the anisotropies; only the shear parameter is

affected substantially. However, it must be remembered that tile physical and numerical

experiments have only been conducted for St _< 30. For tile case where Silo/Co = 3.38,

Rto = 750 and C¢3 -- 0.001 shown in Figure 1, the SSG model with vortex stretching

predicts that

bll = 0.215, b12 = -0.163, b22 = -0.141, b33 = -0.074, ,gK/e = 5.40 (12)

at ,5't = 30 - results that are in close proximity to the experimental data which is given on

Table 1.

CONCLUDING REMARKS

The Reynolds stress calculations presented in this study clearly indicate that the in-

troduction of the non-equilibrium vortex stretching effect of Bernard and Speziale (1992)

in a recently proposed second-order closure model does not compromise the accuracy of its

quantitative predictions for homogeneous shear flow. In fact, when the SSG model was mod-

ified to incorporate this vortex stretching effect, better agreement with experimental data

was achieved on two fronts: (a) consistent with experiments, a universal equilibrium was

not reached by ,5't = 30, and (b) a variety of production to dissipation ratios in the range

1 < P/e < 1.8, depending on the initial conditions, were obtained at ,_gt = 30 consistent

with experiments (7_/e asymptotes to I for elapsed times ,qt > 60). In our opinion, the

level of agreement between the model predictions and experiments is of such quality that a

production-equals-dissipation equilibrium, with bounded energy states, cannot be ruled out

as a viable alternative to the classically accepted hypothesis of unbounded energy growth.

As discussed by Bernard and Speziale (1992), the question of whether or not homogeneous

shear flow actually saturates to a production-equals-dissipation equilibrium remains an open

question that will only be firmly resolved by a rigorous mathematical analysis. However, even

if it were to be ultimately proved that homogeneous shear flow has unbounded energy growth,
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this would be due to the idealizednature of the problem; real physical systemssaturate

before singularities occur. The introduction of this vortex stretching effect in Reynolds

stressclosurescould lead to better behavedmodelsby preventingsuchsingularities,without
compromisingtheir ability to collapseexperimentaldata in benchmark turbulent flows like
homogeneousshearflow.
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Equilibrium

Values

bll

522

533

512

SK/_

SSG Model

(c_3 = o)

0.219

SSG Model

(c_3 > 0)

0.201

Experimental
Data

0.21

-0.146

-0.073

-0.164

5.75

-0.127

-0.074

-0.160

3.12

-0.14

-0.07

-0.16

5.0

Table 1. Comparison of the predictions of the SSG model for the equilibrium values in

homogeneous shear flow with physical and numerical experiments (Tavoularis and Karnik

1989 and Rogers et al. 1986).
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Figure 1. Time evolution of tile turbulent kinetic energy in honlogeneous shear flow: ,. ho/eo

= 3.38 and Rt0 = 750. (a) Comparison of the vortex-stretching modified SSG model (C_a =

0.001) with the large-eddy simulation of Bardina et al. (1983), and (b) the long-time SSG

model predictions (C,a = 0 and C_a = 0.001).
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Figure 1. Time evolution of tile turbulent kinetic energy in tlomogeneous shear flow: SKo/eo

= 3.38 and R_0 = 750. (a) Comparison of the vortex-stretching modified SSG model (C_a =

0.001) with tile large-eddy simulation of Bardina et al. (1983), and (b) the long-time SSG

model predictions (C_3 = 0 and C_a = 0.001).
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Figure 2. Time evolution of tile turbulent kinetic energy predicted by tile SSG model with

vortex stretching for a range of values of C_3; SKo/co = 3.38 and R, o = 750.
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Figure 3. Time evolution of tile ratio of production to dissipation in homogeneous shear flow

for SKo/eo = 3.38 and Rto= 750: (a) Predictions of thc SSG Inodel for a variety of values

of C,3 for St < 30, and (b) Predictions of the SSG model for St < 100.
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Figure 3. Time evolution of tile ratio of production to dissipation in honlogeneous shear flow

for SKo/eo = 3.38 and R, o = V50: (_) Predictions of the SSG model for a variety of values

of C_a for ,5't < 30, and (b) Predictions of the SSG model for St <_ 100.
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